Insertion and excision of the transposable element mariner in Drosophila.
نویسندگان
چکیده
The transposable element mariner is active in both germline and somatic cells of Drosophila mauritiana. Activity of the element is greatly enhanced in the presence of Mos1, a genetic factor identified as an autonomous copy of mariner. A strain of D. mauritiana containing Mos1 and other copies of mariner was used to initiate a screen for visible mutations. More than 20 mutations were obtained, including alleles of white, yellow and vermilion. Six alleles were characterized at the molecular level, and all were found to contain a mariner element inserted into the affected gene. Four insertions into the white locus were sequenced to determine the exact site of insertion of mariner. There appears to be little sequence specificity requirement for mariner insertion, other than an absolute requirement for the dinucleotide TA, which is duplicated upon insertion. Sequences of phenotypically wild-type germline and somatic revertants obtained from various white alleles, including the previously isolated wpch allele, were obtained using the polymerase chain reaction. Mariner excision is imprecise in both germline and soma, and the most frequent excision events are the same in the two tissues. Mutant derivatives of wpch were also studied, and were found to exhibit a wide range of molecular structures and phenotypes.
منابع مشابه
Unexpected stability of mariner transgenes in Drosophila.
A number of mariner transformation vectors based on the mauritiana subfamily of transposable elements were introduced into the genome of Drosophila melanogaster and examined for their ability to be mobilized by the mariner transposase. Simple insertion vectors were constructed from single mariner elements into which exogenous DNA ranging in size from 1.3 to 4.5 kb had been inserted; composite v...
متن کاملThe transposable element mariner mediates germline transformation in Drosophila melanogaster.
A vector for germline transformation in Drosophila melanogaster was constructed using the transposable element mariner. The vector, denoted pMlwB, contains a mariner element disrupted by an insertion containing the wild-type white gene from D. melanogaster, the beta-galactosidase gene from Escherichia coli and sequences that enable plasmid replication and selection in E. coli. The white gene is...
متن کاملmariner into the Germline of Drosophila melanogaster
A chimeric white gene ( z P h ) and other constructs containing the transposable element mariner from Drosophila mauritiana were introduced into the germline of Drosophila melanogaster using transformation mediated by the P element. In the absence of other mariner elements, the WPLh allele is genetically stable in both germ cells and somatic cells, indicating that the peach element ( i e . , th...
متن کاملReduced germline mobility of a mariner vector containing exogenous DNA: effect of size or site?
Germline mobilization of the transposable element mariner is severely inhibited by the insertion of a 4.5- to 11.9-kb fragment of exogenous DNA into a unique SacI site approximately in the middle of the 1286-bp element. In the presence of transposase driven by the germline-specific hsp26-sgs3 promoter, mobilization of the MlwB construct (containing a 11.9-kb insertion) is detected at low freque...
متن کاملDetection of de novo insertion of the medaka fish transposable element Tol2.
Tol2 is a terminal-inverted-repeat transposable element of the medaka fish Oryzias latipes. It is a member of the hAT (hobo/Activator/Tam3) transposable element family that is distributed in a wide range of organisms. We here document direct evidence for de novo insertion of this element. A Tol2 clone marked with the bacterial tetracycline-resistance gene was microinjected into fertilized eggs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 125 1 شماره
صفحات -
تاریخ انتشار 1990